lnec

AI FOR ENERGY COMMUNITIES: MODELLING AND CONTROLLING FLEXIBLE POWER CONSUMPTION MATTHIAS STROBBE

CONFIDENTIAL

TYPICAL ARRIVAL AND DEPARTURE TIMES (1/2)

unec

GHENT

CHARACTERISATION OF CHARGING BEHAVIOR

	Park to charge	Charge near home	Charge near work
Connection time	2h28	I 3h24	8h42
Charge time	I h40	3h24	3h12
Flexibility	48'	IOh	5h30

CONTROLLING EV CHARGING?

Objectives:

unec

harheiles

week

- Flatten load: peak shaving & valley filling
- Balance renewable sources
- Avoid voltage violations

DEMAND RESPONSE CONTROL ALGORITHMS

٠

week

REINFORCEMENT LEARNING FOR DEMAND RESPONSE OF EVS

input: arrival & departure times, charging needs output: which EVs to charge now?

unec

partne

week

bechnical

GHENT

UNIVERSITY

CONFIDENTIAL

REINFORCEMENT LEARNING MODEL

Train the system using sample trajectories from possible decision trees

EXPERIMENTAL EVALUATION

unec

- Flexibility varies: higher cost difference between BAU and optimal
- RL policy exploits flexibility to varying degree

NILM ... WHAT & WHY?

NILM = non-intrusive load monitoring

Cost-effective: single sensor

source: http://blog.oliverparson.co.uk/2014/ 04/ paper-accepted-at-nilm-2014.html

- Energy efficiency
 - Electricity bill split per device → awareness
 → incentive to reduce
 - Identify anomalies, electricity theft, ...
- Energy usage patterns
 - Advice to adapt to time-varying prices
 - Load forecasting
 - Activity recognition \rightarrow e.g., healthcare apps

ENERGY DISAGGREGATION

Result:Test on public dataset (PLAID), II appliance types→ 84.5% accuracy (state-of-the-art was 81.4%)

UNIVERSITY

technical

week

I1

HIGHLY EFFICIENT BIFACIAL SOLAR CELLS WITH NEAR 100% BIFACIALITY

Distributed energy storage Solid-state Li-ion batteries based on nanocomposite electrolyte for local grid battery systems

ACCURATE PV E-YIELD SIMULATION FRAMEWORK

- 584.1 W/m² (0.69 cle

- Physics-based, taking all materials and effects into account
- Validated high precision
- Applicable for
 - Monofacial / bifacial
 - Fix-tilt / tracked systems
 - PV in complex environment (e.g. BIPV, agri, floating, ...)

System model Inverter, wiring Time series of energy output (DC and AC)

E-YIELD SIMULATION APPLICATION FIELDS

- Simulation of PV production
 - More accurate than existing software for bifacial PV energy production
 - Sizing of power plants, determine anticipate output, more accurate financial return calculation, technology selection

- Operation and Maintenance monitoring
 - Create accurate digital twin for fast fault detection
 - Simplified preventive PV asset maintenance
- PV forecasting
 - Better short-term forecasting taking into account local actual weather effects
 - Can be linked with energy management systems (chose to store, consume, put on grid, take from grid, ...) depending on electricity cost

HYBRID PV PLANTS VIRTUAL POWER PLANTS

- PV plants becoming dispatchable assets thanks to the addition of cost-effective storage solutions.
- The use of advanced forecasting techniques and proactive power plant control will further boost the penetration potential of PV in next generation grid and power system architectures.

UNIVERSITY

17

ONGOING RESEARCH PROJECTS ON ENERGY COMMUNITIES

CITY DISTRICT 'NEW SOUTH' IN ANTWERP

UIA Circular South (2018-2021)

- Demonstration project on circular economy
- Monitoring of energy and waste consumption of inhabitants

imea

 Motivation of participants to adopt a sustainable behavior via nudging techniques and incentivizing via blockchain based circules.

>400 Housing units+ City complex (schools, sports infrastructure etc.)

່ຫ

City district 'The New Docks' in Ghent

Smart Multi-Energy District

Nutrient recovery

GHENT

unec

CONFIDENTIAL

RESEARCH PROJECTS

Interconnect

H2020 InterConnect (2019-2023)

Improve interoperability between buildings and energy grids via the design of an interoperable marketplace toolbox and IoT reference architecture using SAREF as data model.

H2020 RENergetic (2020-2024) Optimization of different energy vectors (electricity, heat, waste) in urban districts to improve energy efficiency and self-sufficiency

າກອ

Flux50 ICON ROLECS (2019-2021)

Design and demonstration of local energy communities in Flanders via 10 pilots from a technical, user, economical and regulatory perspective

Bright

ROLECS

H2020 BRIGHT (2020-2023)

Design of digital twins and demand response services for residential users and energy communities.

23

embracing a better life

ເຫາec